Cloning and analysis of the planosporicin lantibiotic biosynthetic gene cluster of Planomonospora alba.
نویسندگان
چکیده
The increasing prevalence of antibiotic resistance in bacterial pathogens has renewed focus on natural products with antimicrobial properties. Lantibiotics are ribosomally synthesized peptide antibiotics that are posttranslationally modified to introduce (methyl)lanthionine bridges. Actinomycetes are renowned for their ability to produce a large variety of antibiotics, many with clinical applications, but are known to make only a few lantibiotics. One such compound is planosporicin produced by Planomonospora alba, which inhibits cell wall biosynthesis in Gram-positive pathogens. Planosporicin is a type AI lantibiotic structurally similar to those which bind lipid II, the immediate precursor for cell wall biosynthesis. The gene cluster responsible for planosporicin biosynthesis was identified by genome mining and subsequently isolated from a P. alba cosmid library. A minimal cluster of 15 genes sufficient for planosporicin production was defined by heterologous expression in Nonomuraea sp. strain ATCC 39727, while deletion of the gene encoding the precursor peptide from P. alba, which abolished planosporicin production, was also used to confirm the identity of the gene cluster. Deletion of genes encoding likely biosynthetic enzymes identified through bioinformatic analysis revealed that they, too, are essential for planosporicin production in the native host. Reverse transcription-PCR (RT-PCR) analysis indicated that the planosporicin gene cluster is transcribed in three operons. Expression of one of these, pspEF, which encodes an ABC transporter, in Streptomyces coelicolor A3(2) conferred some degree of planosporicin resistance on the heterologous host. The inability to delete these genes from P. alba suggests that they play an essential role in immunity in the natural producer.
منابع مشابه
A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp.
Important classes of antibiotics acting on bacterial cell wall biosynthesis, such as beta-lactams and glycopeptides, are used extensively in therapy and are now faced with a challenge because of the progressive spread of resistant pathogens. A discovery program was devised to target novel peptidoglycan biosynthesis inhibitors capable of overcoming these resistance mechanisms. The microbial prod...
متن کاملMicrobisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes.
Lantibiotics are ribosomally synthesized, posttranslationally modified peptide antibiotics. The biosynthetic gene cluster for microbisporicin, a potent lantibiotic produced by the actinomycete Microbispora corallina containing chlorinated tryptophan and dihydroxyproline residues, was identified by genome scanning and isolated from an M. corallina cosmid library. Heterologous expression in Nonom...
متن کاملCloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005.
Lantibiotics are ribosomally synthesized oligopeptide antibiotics that contain lanthionine bridges derived by the posttranslational modification of amino acid residues. Here, we describe the cinnamycin biosynthetic gene cluster (cin) from Streptomyces cinnamoneus cinnamoneus DSM 40005, the first, to our knowledge, lantibiotic gene cluster from a high G+C bacterium to be cloned and sequenced. Th...
متن کاملCloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor
Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Tri...
متن کاملجدا نمودن ژن تنظیمی استرپتومایسین فاقد پروموتر [StrR2] از استرپتومایسز گریزئوس
Background and purpose: Polymerase chain reaction (PÇR) is a rather quick and accurate method employed for gene detection and isolation. Primer designing is an important issue in this technique and plays a critical role in considering both the genome properties and cloning of the isolated genes. Streptomycin antibiotic is produced by Streptomyces griseus using str gene cluster with more than 25...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 195 10 شماره
صفحات -
تاریخ انتشار 2013